\(\int \frac {x^4}{(a+b x^2) (c+d x^2)^{3/2}} \, dx\) [713]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 109 \[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=-\frac {c x}{d (b c-a d) \sqrt {c+d x^2}}+\frac {a^{3/2} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b (b c-a d)^{3/2}}+\frac {\text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b d^{3/2}} \]

[Out]

a^(3/2)*arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))/b/(-a*d+b*c)^(3/2)+arctanh(x*d^(1/2)/(d*x^2+c)^(1/2
))/b/d^(3/2)-c*x/d/(-a*d+b*c)/(d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {481, 537, 223, 212, 385, 211} \[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {a^{3/2} \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b (b c-a d)^{3/2}}-\frac {c x}{d \sqrt {c+d x^2} (b c-a d)}+\frac {\text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b d^{3/2}} \]

[In]

Int[x^4/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

-((c*x)/(d*(b*c - a*d)*Sqrt[c + d*x^2])) + (a^(3/2)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c + d*x^2])])/(b*
(b*c - a*d)^(3/2)) + ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]]/(b*d^(3/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 481

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Dist[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0]
 && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {c x}{d (b c-a d) \sqrt {c+d x^2}}+\frac {\int \frac {a c+(b c-a d) x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{d (b c-a d)} \\ & = -\frac {c x}{d (b c-a d) \sqrt {c+d x^2}}+\frac {\int \frac {1}{\sqrt {c+d x^2}} \, dx}{b d}+\frac {a^2 \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b (b c-a d)} \\ & = -\frac {c x}{d (b c-a d) \sqrt {c+d x^2}}+\frac {\text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b d}+\frac {a^2 \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b (b c-a d)} \\ & = -\frac {c x}{d (b c-a d) \sqrt {c+d x^2}}+\frac {a^{3/2} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b (b c-a d)^{3/2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{b d^{3/2}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(666\) vs. \(2(109)=218\).

Time = 2.43 (sec) , antiderivative size = 666, normalized size of antiderivative = 6.11 \[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {c x \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}{d (-b c+a d) \left (c+d x^2-\sqrt {c} \sqrt {c+d x^2}\right )}+\frac {a^{3/2} \sqrt {c} \arctan \left (\frac {\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (\sqrt {c}-\sqrt {c+d x^2}\right )}\right )}{\sqrt {b} (b c-a d)^{3/2} \sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}}}+\frac {a^{3/2} \arctan \left (\frac {\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}\right )}{\left (b^2 c-a b d\right ) \sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}}}+\frac {a^{3/2} \sqrt {c} \arctan \left (\frac {\sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}\right )}{\sqrt {b} (b c-a d)^{3/2} \sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}}}+\frac {a^{3/2} \arctan \left (\frac {\sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (-\sqrt {c}+\sqrt {c+d x^2}\right )}\right )}{\left (b^2 c-a b d\right ) \sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}}}+\frac {2 a \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c}-\sqrt {c+d x^2}}\right )}{\sqrt {d} \left (b^2 c-a b d\right )}+\frac {2 c \text {arctanh}\left (\frac {\sqrt {d} x}{-\sqrt {c}+\sqrt {c+d x^2}}\right )}{d^{3/2} (b c-a d)} \]

[In]

Integrate[x^4/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

(c*x*(-Sqrt[c] + Sqrt[c + d*x^2]))/(d*(-(b*c) + a*d)*(c + d*x^2 - Sqrt[c]*Sqrt[c + d*x^2])) + (a^(3/2)*Sqrt[c]
*ArcTan[(Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(Sqrt[c] - Sqrt[c + d*x^2]))])/(Sqr
t[b]*(b*c - a*d)^(3/2)*Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]) + (a^(3/2)*ArcTan[(Sqrt[2*b*c -
a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(-Sqrt[c] + Sqrt[c + d*x^2]))])/((b^2*c - a*b*d)*Sqrt[2*b
*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]) + (a^(3/2)*Sqrt[c]*ArcTan[(Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]
*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(-Sqrt[c] + Sqrt[c + d*x^2]))])/(Sqrt[b]*(b*c - a*d)^(3/2)*Sqrt[2*b*c - a*d + 2*
Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]) + (a^(3/2)*ArcTan[(Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/
(Sqrt[a]*(-Sqrt[c] + Sqrt[c + d*x^2]))])/((b^2*c - a*b*d)*Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]
]) + (2*a*ArcTanh[(Sqrt[d]*x)/(Sqrt[c] - Sqrt[c + d*x^2])])/(Sqrt[d]*(b^2*c - a*b*d)) + (2*c*ArcTanh[(Sqrt[d]*
x)/(-Sqrt[c] + Sqrt[c + d*x^2])])/(d^(3/2)*(b*c - a*d))

Maple [A] (verified)

Time = 3.02 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.07

method result size
pseudoelliptic \(-c \left (-\frac {\operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right )}{d^{\frac {3}{2}} c b}-\frac {x}{\left (a d -b c \right ) d \sqrt {d \,x^{2}+c}}+\frac {a^{2} \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )}{\left (a d -b c \right ) b c \sqrt {\left (a d -b c \right ) a}}\right )\) \(117\)
default \(\frac {-\frac {x}{d \sqrt {d \,x^{2}+c}}+\frac {\ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{d^{\frac {3}{2}}}}{b}-\frac {a x}{b^{2} c \sqrt {d \,x^{2}+c}}+\frac {a^{2} \left (-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {2 d \sqrt {-a b}\, \left (2 d \left (x -\frac {\sqrt {-a b}}{b}\right )+\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{2 b^{2} \sqrt {-a b}}-\frac {a^{2} \left (-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}-\frac {2 d \sqrt {-a b}\, \left (2 d \left (x +\frac {\sqrt {-a b}}{b}\right )-\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{2 b^{2} \sqrt {-a b}}\) \(804\)

[In]

int(x^4/(b*x^2+a)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-c*(-1/d^(3/2)/c/b*arctanh((d*x^2+c)^(1/2)/x/d^(1/2))-1/(a*d-b*c)/d/(d*x^2+c)^(1/2)*x+1/(a*d-b*c)*a^2/b/c/((a*
d-b*c)*a)^(1/2)*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 195 vs. \(2 (91) = 182\).

Time = 0.40 (sec) , antiderivative size = 977, normalized size of antiderivative = 8.96 \[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\left [-\frac {4 \, \sqrt {d x^{2} + c} b c d x - 2 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right ) + {\left (a d^{3} x^{2} + a c d^{2}\right )} \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, {\left (b^{2} c^{2} d^{2} - a b c d^{3} + {\left (b^{2} c d^{3} - a b d^{4}\right )} x^{2}\right )}}, -\frac {4 \, \sqrt {d x^{2} + c} b c d x + 4 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + {\left (a d^{3} x^{2} + a c d^{2}\right )} \sqrt {-\frac {a}{b c - a d}} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b^{2} c^{2} - 3 \, a b c d + 2 \, a^{2} d^{2}\right )} x^{3} - {\left (a b c^{2} - a^{2} c d\right )} x\right )} \sqrt {d x^{2} + c} \sqrt {-\frac {a}{b c - a d}}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right )}{4 \, {\left (b^{2} c^{2} d^{2} - a b c d^{3} + {\left (b^{2} c d^{3} - a b d^{4}\right )} x^{2}\right )}}, -\frac {2 \, \sqrt {d x^{2} + c} b c d x + {\left (a d^{3} x^{2} + a c d^{2}\right )} \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right ) - {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {d} \log \left (-2 \, d x^{2} - 2 \, \sqrt {d x^{2} + c} \sqrt {d} x - c\right )}{2 \, {\left (b^{2} c^{2} d^{2} - a b c d^{3} + {\left (b^{2} c d^{3} - a b d^{4}\right )} x^{2}\right )}}, -\frac {2 \, \sqrt {d x^{2} + c} b c d x + 2 \, {\left (b c^{2} - a c d + {\left (b c d - a d^{2}\right )} x^{2}\right )} \sqrt {-d} \arctan \left (\frac {\sqrt {-d} x}{\sqrt {d x^{2} + c}}\right ) + {\left (a d^{3} x^{2} + a c d^{2}\right )} \sqrt {\frac {a}{b c - a d}} \arctan \left (-\frac {{\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c} \sqrt {\frac {a}{b c - a d}}}{2 \, {\left (a d x^{3} + a c x\right )}}\right )}{2 \, {\left (b^{2} c^{2} d^{2} - a b c d^{3} + {\left (b^{2} c d^{3} - a b d^{4}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(x^4/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(d*x^2 + c)*b*c*d*x - 2*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2
 + c)*sqrt(d)*x - c) + (a*d^3*x^2 + a*c*d^2)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 +
 a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*s
qrt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(b^2*c^2*d^2 - a*b*c*d^3 + (b^2*c*d^3 - a*b
*d^4)*x^2), -1/4*(4*sqrt(d*x^2 + c)*b*c*d*x + 4*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt(-d)*arctan(sqrt(-d)
*x/sqrt(d*x^2 + c)) + (a*d^3*x^2 + a*c*d^2)*sqrt(-a/(b*c - a*d))*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 +
a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b^2*c^2 - 3*a*b*c*d + 2*a^2*d^2)*x^3 - (a*b*c^2 - a^2*c*d)*x)*sq
rt(d*x^2 + c)*sqrt(-a/(b*c - a*d)))/(b^2*x^4 + 2*a*b*x^2 + a^2)))/(b^2*c^2*d^2 - a*b*c*d^3 + (b^2*c*d^3 - a*b*
d^4)*x^2), -1/2*(2*sqrt(d*x^2 + c)*b*c*d*x + (a*d^3*x^2 + a*c*d^2)*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a
*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sqrt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)) - (b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*
sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c))/(b^2*c^2*d^2 - a*b*c*d^3 + (b^2*c*d^3 - a*b*d^4)*x^2)
, -1/2*(2*sqrt(d*x^2 + c)*b*c*d*x + 2*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*
x^2 + c)) + (a*d^3*x^2 + a*c*d^2)*sqrt(a/(b*c - a*d))*arctan(-1/2*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)*sq
rt(a/(b*c - a*d))/(a*d*x^3 + a*c*x)))/(b^2*c^2*d^2 - a*b*c*d^3 + (b^2*c*d^3 - a*b*d^4)*x^2)]

Sympy [F]

\[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int \frac {x^{4}}{\left (a + b x^{2}\right ) \left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(x**4/(b*x**2+a)/(d*x**2+c)**(3/2),x)

[Out]

Integral(x**4/((a + b*x**2)*(c + d*x**2)**(3/2)), x)

Maxima [F]

\[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int { \frac {x^{4}}{{\left (b x^{2} + a\right )} {\left (d x^{2} + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x^4/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^4/((b*x^2 + a)*(d*x^2 + c)^(3/2)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^4/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int \frac {x^4}{\left (b\,x^2+a\right )\,{\left (d\,x^2+c\right )}^{3/2}} \,d x \]

[In]

int(x^4/((a + b*x^2)*(c + d*x^2)^(3/2)),x)

[Out]

int(x^4/((a + b*x^2)*(c + d*x^2)^(3/2)), x)